【Matlab/CV系列】高动态HDR压缩技术研究及其实现

【Matlab基础入门和进阶教程】 同时被 3 个专栏收录
45 篇文章 79 订阅 ¥99.00 ¥49.90
89 篇文章 79 订阅 ¥99.00 ¥49.90
49 篇文章 78 订阅 ¥99.00 ¥59.90

Date: 2019-4-19


前言

图像显示技术的最终目的就是使得显示的图像效果尽量接近人们在自然界中观察到的对应的场景。HDR图像与视频有着更高的亮度、更深的位深、更广的色域,因此它无法在常见的普通显示器上显示。入门级的显示器与播放设备(例如普通人家使用的电视,常见的电脑、智能手机屏幕等)的对比度很低,只有大约200:1。相对性能更好的LCD显示器能达到更高的对比度,大约10000:1。但是,这些设备通常都会将一个色彩通道离散化到8-bit,少数10-bit的色度区间内。这意味着色度区间只有255个层级,这样的显示设备,我们称之为LDR显示设备。很显然,HDR图像是无法在这些显示设备上直接显示的,为了使得HDR图像与视频也能兼容地放映在LDR设备上,就必须使用色调映射(Tone Mapping)技术将HDR图像与视频映射为LDR图像与视频,进而可以正常显示在LDR显示设备上。

色调映射算法的目的在于将HDR图像的亮度进行压缩,进而映射到LDR显示设备的显示范围之内,同时,在映射的过程中要尽量保持原HDR图像的细节与颜色等重要信息。所以色调映射算法需要具有两方面的性质:1. 能够将图像亮度进行压缩。2. 能够保持图像细节与颜色。

本文提供了一种HDR压缩的方法及其Matlab实现。

1、参考

局部边缘保持滤波(LEP)高动态范围图像HDR压缩

  • 3
    点赞
  • 3
    评论
  • 4
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
调用自定义函数解决题目: 1.读取自然图像、生成合成图像、相关图像、去相关图像,调用yasuo.m函数,完成压缩,并显示不同像素值的图像 2.读取自然图像、生成合成图像、相关图像、去相关图像,调用yasuo.m函数,完成压缩,并显示不同像素值的图像;调用dfff.m,得到傅里叶变换后的图像 3.读取自然图像、生成合成图像、相关图像、去相关图像,fft中心变换,得到傅里叶变换后的图像,调用fwhtdya2d.m,得到walsh变换后的图像,进行两种变换的对比 4.读取自然图像、生成合成图像、相关图像、去相关图像,调用yasuo.m函数,完成压缩,并显示不同像素值的图像;调用dfff.m,得到傅里叶变换后的图像和傅里叶变换需要的时间,显示变换后的图像,显示傅里叶变换时间随图像像素的变化 5.调用butterworthw.m,使用不同的阶数:2,5,10,显示不同阶数butterworth通滤波和低通滤波滤波器的传递函数和处理后的图像,用于对比阶数对图像处理的影响 6.调用butterworthw.m,显示原图像、原图像频谱、低通滤波、通滤波的传递函数,以及滤波器处理后的图像 7.读取自然图像、生成合成图像、相关图像、去相关图像,使用标准差为0.1、0.5、0.9的拉普拉斯斯滤波器进行滤波处理4种图像,同时显示原图像和滤波处理后图像 8.读取自然图像,转换成灰度图片,计算其直方图,并两次增强,储存两次增强的图像,同时显示原图像、增强图像、再次增强图像和它们的直方图 9.读出自然图象,转换成灰度图片,生成合成图片,调用kirsch.m,提取图像边缘并显示,调用sobele.m,提取图像边缘并显示,同时显示自然图像、合成图像、它们kirsch提取边缘处理的图像、它们sobel提取边缘处理的图像,便于对比 10.读取自然图像、生成合成图像、相关图像、去相关图像,调用yasuo.m函数,完成压缩,并显示不同像素值的图像;调用dfff.m,得到傅里叶变换后的图像、傅里叶变换、傅里叶中心变换需要的时间,显示不同种类图像变换后的图像,显示傅里叶变换、傅里叶中心变换所需时间时间随图像像素的变化
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页

打赏

飞翔的鲲

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值