【CV系列】无参考图像的清晰度评价方法,附NRSS的matlab实现

【图像处理入门和进阶教程】 同时被 3 个专栏收录
89 篇文章 79 订阅 ¥99.00 ¥49.90
57 篇文章 60 订阅 ¥99.00 ¥39.90
49 篇文章 78 订阅 ¥99.00 ¥59.90

Date: 2018/3/11


参考:https://blog.csdn.net/real_myth/article/details/50827940

https://blog.csdn.net/wxplol/article/details/87917740

 

  在无参考图像的质量评价中,图像的清晰度是衡量图像质量优劣的重要指标,它能够较好的与人的主观感受相对应,图像的清晰度不高表现出图像的模糊。本文针对无参考图像质量评价应用,对目前几种较为常用的、具有代表性清晰度算法进行讨论分析,为实际应用中选择清晰度算法提供依据。

 

(1)Brenner 梯度函数

 

Brenner梯度函数是最简单的梯度评价函数,它只是简单的计算相邻两个像素灰度差的平方,该函数定义如下:

无参考图像的清晰度评价方法 - nkwavelet - 小波的世界

        其中:f(x,y) 表示图像f对应像素点(x,y)的灰度值,D(f)为图像清晰度计算结果(下同)。

 

(2࿰

  • 6
    点赞
  • 18
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页

打赏

飞翔的鲲

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值