【机器视觉系列】机器学习之一:logistic回归分析(含Matlab代码)

logistic回归是回归分析的一种,函数表达式为
y = 1/(1+exp(-x))
在matlab中可以画出其graph:

x = -10:0.1:10;
y = 1./(exp(-x)+1);
plot(x,y,'g-x');
title('logistic function');
xlabel('x');ylabel('y');

以上是一维的情况。对于多维变量,可以定义一个超平面 代入原来的变量x中,得到:

对于任意变量x,可以代入上式计算出y值并与0.5比较进行分类, 分类式为:

其中sgn(x) 为符号函数。

为了演示logistic函数是版怎样用于分类的, 假定我们有一组数据,分别对应的类别为。 定义平方和(或L2-norm)代价函数为:

通过最小化代价函数可以得到模型的参数w和b 。最小化的方法有很多种, 在下面的代码中给出一个最简单的梯度下降法。其基本思想是利用代价函数对w和b的一阶导数。 由于CSDN输入公式太不方便了,关于导数如何求得请大家参考下面的Matlab代码。

%% generate random data
shift = 2;
n = 2;%2 dim
N = 200;
x = [randn(n,N/2)-shift, randn(n,N/2)*2+shift];
y = [zeros(N/2,1);ones(N/2,1)];

%show the data
figure;
plot(x(1,1:N/2),x(2,1:N/2),'rs'
飞翔的鲲 CSDN认证博客专家 CV(computer vision) 音视频/编解码 优化
一名音视频编解码coder,喜欢深入钻研各种新技术(编解码、图像处理、算法优化等)。CSDN明星博主,认证博客专家,目前专注于音视频编解码和AI技术领域,开源分享,不忘初心,追求卓越!
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 39.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值